Roll No.:....

322452(14)

B. E. (Fourth Semester) Examination, April-May 2020

(New Scheme)

(CSE Branch)

DISCRETE STRUCTURES

Time Allowed: Three hours

Maximum Marks: 80

Minimum Pass Marks: 28

Note: Part (a) of each question is compulsory and carries 2 marks. Attempt any two the remaining questions and carries 7 marks each.

e will be with the full-link of Sec. 18 and world to

1. (a) Define Universal and Existential quantifiers.

2

- (b) Prove that $(P \leftrightarrow q) \land (q \leftrightarrow r) \rightarrow (P \leftrightarrow r)$ is a tautology.
- (c) Obtain the conjunctive normal form of the following function:

$$f(x, y, z) = xy' + xz + zy.$$

- (d) Prove that for every elements *a* and *b* of a Boolean algebra
 - (i) $(a+b)' = a' \cdot b'$
 - (ii) $(a \cdot b)' = a' + b'$

Unit-II

- 2. (a) Define Equivalence Relation.
 - (b) If A, B, C are any three non empty sets then prove that

$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$

(c) Show that the function $f: R \to R$ defined by $f(x) = 5x^3 - 1$ is one-one onto. Where R is the set of real numbers.

(d) Explain:

7

7

7

- (i) Partial Order Relation
- (ii) Hasse Diagram
- (iii) Lattice

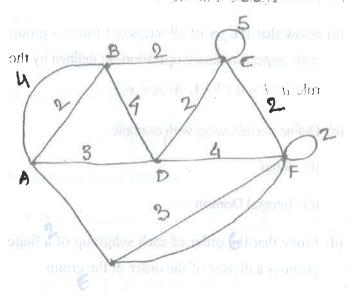
Unit-III

- 3. (a) Define algebric structure.
 - (b) Show that the set of all integers I forms a group with respect to binary operation '*' defined by the rule a*b=a+b+1, $\forall a,b\in I$.
 - (c) Define the following with example:
 - (i) Rings
 - (ii) Integral Domain
 - (d) Prove that the order of each subgroup of a finite group is a divisor of the order of the group.

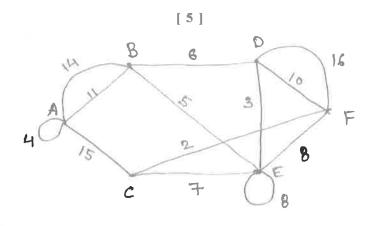
draw : In along a said Unit-IV

2. (a) Define the following terms:

2


7

7


7

2

- [4]
- Directed Graph
- (ii) Undirected Graph
- (b) Prove that if G is a tree with n vertices then it has exactly (n-1) edges.
- (c) Using Dijkstra's algorithm, find the shortest path between A and F for the following graph.

(d) Find the minimal spanning tree of the weighted Graph Yes the following termental series of the se

Unit-V

5. (a) If ${}^{n}P_{4} = 12 \times {}^{n}P_{2}$ then find the value of n.

(b) Use method of induction to prove that

$$1^3 + 2^3 + 3^3 + \dots + n^3 = \frac{n^2(n+1)^2}{4}$$

(c) Find the generating function for

$$a_r = 3^r, \quad r \ge 0.$$

(d) Solve the recurrence relation

$$9 a_r - 6 a_{r-1} + a_{r-2} = 0$$

given that $a_0 = 0$ and $a_1 = 1$

2